Blood clot breakthrough a saviour for diabetics

Research Updates

A breakthrough by Australian scientists could soon protect hundreds of thousands of people wordlwide with diabetes from killer heart disease and strokes.

Researchers at Heart Research Institute have uncovered why common blood thinners used to protect millions worldwide from life-threatening blood clots don’t work as well for people with diabetes.

The study, published in the journal Nature Communications, is the first to show the mechanism that triggers catastrophic clotting in these at-risk patients. This discovery provides scientists with a potential new way to protect the nation’s growing number of diabetics from suffering from heart attack and stroke, says HRI cardiovascular specialist and senior author Professor Shaun Jackson.

“Strokes and cardiovascular disease cause a lot of heartache for people with diabetes and their families, so to be able to offer a potential solution is hugely exciting,” Professor Jackson says.

In the UK, 190 people will die from a heart attack each day, and there is one stroke every 5 minutes. Both conditions are typically caused by clots that block the supply of blood to the heart or brain. Blood thinners are commonly used to prevent clots, with millions of people worldwide taking them daily to keep strokes and heart attacks at bay.

But for those with diabetes, the benefits are limited. “Heart disease and stroke are considerable problems for diabetics, because they don’t respond as well to blood thinning drugs like aspirin and Plavix that we use to prevent them,” Professor Jackson says.

Described as the epidemic of the 21st century, diabetes represents the biggest challenge confronting the  health system, the specialist says.

“Cardiovascular disease kills 70 per cent of people with diabetes. It’s a huge problem and, like obesity, it’s growing,” Professor Jackson says.

“These people develop heart disease earlier and will die earlier so we urgently need to understand why they’re at greater risk.”

The HRI research team set out to investigate this drug resistance. They studied the blood of people with type one diabetes as well as lab models of the disease and unexpectedly discovered a new pathway responsible for triggering the formation of blood clots.

“We found that when blood flow is disturbed, the mechanical compression forces that are generated within the disturbed blood flow can activate blood clotting cells, leading to growth of bigger clots,” Professor Jackson says. “We think this process occurs in all of us, however the blood cells of patients with diabetes appear to be exquisitely more sensitive to these mechanical forces, triggering larger blood clots.”

Excitingly, a drug in development at HRI, targeting an enzyme called Class I PI 3-kinase, has been found to target this new pathway of blood clotting, and appears to be effective in preventing disease-forming clots in diabetic patients.

This new class of anticlotting drugs was discovered 20 years ago by HRI researchers who have since demonstrated that they are a powerful and more effective alternative to modern day blood thinners. “It’s already proven successful in phase 1 human trials, but to know it will reverse this new clotting tendency in diabetics is great news,” Professor Jackson says. “If it can be used successfully to treat people with diabetes we’ll be protecting many of those in our community that are most vulnerable to heart disease and stroke.”

Further testing to understand this mechanism is underway but HRI researchers are hopeful it could be used to identify which patients are most at risk of clotting problems. “We could test their blood to pick out those with increased risk and get them onto this new medication earlier,” the expert explains.

The work was completed in collaboration with Monash University, Baker Heart and Diabetes Institute, and Georgia Institute of Technology and Emory University School of Medicine, both in Atlanta. View the paper, Compression force sensing regulates integrin αIIbβ3 adhesive function on diabetic platelets, here: www.nature.com/articles/s41467-018-03430-6

Previous
Next

Related news

Meet the team: Dr Melissa Farnham

Born and raised in Nevada, USA, Dr Melissa Farnham originally had no interest in research. Now Unit Leader of the High Blood Pressure Group at HRI, and balancing the challenges of family and work, she couldn’t imagine any other career path.

Read more

Meet the team: Richard Tan

“A career in research really gives you a sense of purpose and drive. While it can be a long and difficult path, every day you can feel satisfied that the work you do is for the greater good. And that in itself is one of the most rewarding experiences,” says Richard Tan, PhD candidate with the Applied Materials Group at HRI.

Read more

Heart patch helps stem cells work magic

The Heart Research Institute is behind the invention of an innovative bio-material patch that can be loaded with a patient’s stem cells to help breathe life into dead tissue following a stroke or heart attack, dramatically improving a patient’s chance of full recovery.

Read more